
LECTURE 17 DERIVATIVE OF LOGARITHMIC FUNCTIONS

Last class, we derived the formula for the derivative of the inverse f−1 (x) of a di�erentiable function
f (x), given that f ′ (x) 6= 0 everywhere in its domain. Now, we go visit some classical inverse pairs, such as
the logarithmic and exponential function, trig and inverse trig.

We review some basic logarithmic operations. First, what really is logarithm? How did it come about?
Now, everyone knows, 4 is the 2 to the power of 2, i.e. 4 = 22, focus on the exponent. How about 5 then?
What power of 2 gives 5, i.e. �nd x such that

2x = 5.

Mathematicians then said, let's call it something, since we don't have an expression for it. Let's call x =
log2 5, read as logarithmic of 5 base 2. It is a number such that when you raise 2 to this power, you get 5.
In other words, we have the identity,

2log2 5 = 5.

Now, let's compile some known identities about loga b.

(1) (exponentiation trick) By de�nition,

aloga b = b.

This implies that when you see a number b, you can rewrite it as aloga b. We will see how this is
useful later.

(2) (product rule for log)
loga (bc) = loga b+ loga c.

Proof. Let consider two numbers x = loga b and y = loga c. Then, ax = b and ay = c. We further
see that

axay = bc =⇒ ax+y = bc =⇒ x+ y = loga (bc) .

But x+ y = RHS. Done. �

(3) (quotient rule for log) Similarly,

loga

(
b

c

)
= loga b− loga c, c 6= 0.

(4) (bring out the power)
loga b

c = c loga b.

Proof. Clearly if c = 0, this is true. Assume c 6= 0, let x = c loga b. Then
x

c
= loga b =⇒ a

x
c = b =⇒ ax = bc =⇒ x = loga b

c = LHS.

�

(5) (change of base formula)

loga b =
logc b

logc a
.

Proof. Let x = loga b. Then ax = b. At the same time, by itself,

ax = clogc ax

= cx logc a

and
b = clogc b.

This means cx logc a = clogc b. Since cy is a one-to-one function, we must have

x logc a = logc b =⇒ x =
logc b

logc a
.

�
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Logarithm Function

We know that ex and ln (x) are inverses of each other. In other words, ln (x) is ask for the value of the

power we must raise on the number e to obtain x, but e raised to this power, that is, eln(x), should give you
the value back x. Note that ln (x) > 0 for x > 0, and is unde�ned (in real numbers) for x ≤ 0.

As we see just now, the derivative of inverse function relates to the derivative of the original function.
The derivative of the exponential function seems easy enough.

d

dx
ex = ex.

Then, how about d
dx ln (x)? Let f (x) = ex and we know f−1 (x) = ln (x). By the same formula, we �nd that

d

dx
(ln (x)) =

1

f ′ (f−1 (x))
=

1

eln(x)
=

1

x
.

One can also do implicit di�erentiation to arrive at the same result. Consider y = ln (x) and we want dy
dx .

y = ln (x) =⇒ ey = x =⇒ d

dx
ey =

d

dx
(x)

=⇒ ey
dy

dx
= 1 =⇒ dy

dx
=

1

ey
=

1

eln(x)
=

1

x

Furthermore, by chain rule, suppose we now have f (x) = ln (u (x)) where u is a di�erentiable function
(u (x) > 0). Then,

d

dx
(ln (u)) =

df

du
· du
dx

=
1

u
· u′

Example. Find the derivative of ln (bx) for b > 0.

Solution.
d

x
(ln (bx)) =

1

bx

d

dx
(bx) =

1

bx
· b = 1

x
.

So your result is independent of b.

Example 1. Find the derivative of ln |x|.

Solution. By the chain rule formula, note that u (x) = |x|, we must have

d

dx
ln |x| = d

du
ln (u) · du

dx

=
1

u
· x

|x|

=
1

|x|
· x

|x|

=
x

x2

=
1

x
.

This means, 1
x is not only the derivative of ln (x) for x > 0, but also of ln (−x) for x < 0.


